

Zusammenfassung

- Es gibt grundsätzlich zwei Wälzlagerbauformen: Kugellager und Rollenlager
- Kugellager: kugelförmige Wälzkörper, Punktkontakt zwischen Wälzkörpern und Lagerlaufbahn, für hohe Drehzahlen geeignet, Beispiel: Rillenkugellager
- Rollenlager: rollenförmige Wälzkörper, Linienkontakt zwischen Wälzkörpern und Lagerlaufbahn, für hohe Belastungen geeignet, Beispiel: Zylinderrollenlager

Falls ihr in unserem Beitrag zu den Wälzlagergrundlagen vorbeigeschaut haben solltet, wisst ihr wahrscheinlich schon, dass sich Wälzlager grundsätzlich in zwei Bauformen – nämlich Kugellager und Rollenlager – unterteilen lassen.

Kugellager

Kugellager zeichnen sich generell dadurch aus, dass ihre Wälzkörper die Form einer Kugel haben und die Lagerlaufbahn in einem Punkt berühren. Wenn sie belastet werden, bildet sich die Kontaktfläche durch die reale Verformung kreisförmig aus. Durch die Punktberührung ist der Rollwiderstand bei dieser Wälzlagerart gering, sodass die Lager vorrangig in Anwendungen mit hoher Drehzahl und geringeren Belastungen eingesetzt werden. Normalerweise ist ihr Tragvermögen nicht so hoch wie das der Rollenlager, dafür können zumindest Radial-Kugellager sowohl Lasten in axialer als auch radialer Richtung aufnehmen.

@wälzlagerwissen.de

Nicht nur die Kugellager an sich sind rund, sondern auch ihre Wälzkörper.

Die länglichen Wälzkörper der Rollenlager, hier am Beispiel von Zylinderrollenlagern, haben einen

linienförmigen Kontakt mit der Laufbahn.

Rollenlager

Rollenlager weisen im Allgemeinen gegenteilige Eigenschaften der Kugellager auf: Die Berührfläche der belasteten Wälzkörper mit der Laufbahn hat bei realer Verformung die Form eines Rechtecks, sodass man bei idealer Betrachtung von einem Linienkontakt spricht; dies führt zu einem vergleichsweise hohen Reibmoment und höherer Steifigkeit. Aus diesem Grund sind Rollenlager im Vergleich zu Kugellagern eher für Anwendungen mit geringerer Drehzahl geeignet. Rollenlager verfügen über eine hohe Tragfähigkeit. Sie nehmen – bis auf vereinzelte Ausnahmen – hauptsächlich nur Radiallasten auf.

Kugellager	Rollenlager	
Punktkontakt	Linienkontakt	
geringer Rollwiderstand	hohes Reibmoment	
geeignet für Anwendungen mit hoher Drehzahl	Anwendungen müssen geringere Drehzahl aufweisen als bei Kugellagern	
niedrigeres Tragvermögen	höheres Tragvermögen, hohe Steifigkeit	
Lastaufnahme grundsätzlich in radialer sowie axialer Richtung möglich	Lastaufnahme bauartbedingt axial und radial möglich	

Wo Licht ist, ist auch Schatten: Drehzahl und Tragvermögen sind im Kontext der Wälzlager wichtige Faktoren, die aber nie gleichzeitig hoch sein können.

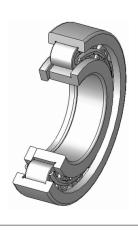
Kugellager- und Rollenlagertypen

Bekannte Kugellagertypen sind Rillenkugellager, Schrägkugellager und Vierpunktlager. Bei den Rollenlagern lassen sich insbesondere die Zylinderrollenlager hervorheben. Weitere Rollenlagertypen, bei denen die Wälzkörper eine leichte abgewandelte Form einer zylindrischen Rolle haben, sind beispielsweise die Nadellager und Kegelrollenlager. In den Unterkapiteln des Bereichs Wälzlagerarten sind tiefgehende Informationen zu den einzelnen Kugellager- und Rollenlagertypen sowie den Gehäuselagern zu finden. Die zentralen Eigenschaften einzelner Lagerarten sind in der Tabelle als Übersicht einzusehen.

Lager	Bild	Vorteile	Nachteile
Kugellager			
Rillenkugellager		 flexible Schmierung in vielen Größen erhältlich 	empfindlich bei Stoßbelastungenrelativ geringe Lebenserwartung
Schrägkugellager		 paarweiser Einbau möglich: belastbarer als Rillenkugellager Vorspannung möglich 	vergleichsweise aufwändige Montage und höhere Kosten

@wälzlagerwissen.de

Axial-Rillenkugellager


- separater
 Einbau von
 Einzelteilen
 möglich
- können nur bedingt

Fluchtungsfehler ausgleichen

 müssen konstruktiv radial freigestellt sein • geringere Drehzahlen

Rollenlager

Zylinderrollenlager

- große Tragzahl bei gleichem Bauraum wie andere Lager
- höchste
 Drehzahlen von allen Rollenlagern
- Schiefstellungen sollten vermieden werden
- hohe Reibung bei vollrolligen Lagern

(Çwälzlagerwissen.de

Kegelrollenlager	 Aufnahme kombinierter Radial- und Axialbelastungen bei paarweisen Einsätzen:	 geringere Grenzdrehzahlen als andere Rollenlager Ölschmierung häufig notwendig
Pendelrollenlager	Aufnahme kombinierter Radial- und Axiallasten hohe Tragzahlen relativ zum Bauraum ermöglicht Ausgleich von Fluchtungsfehlern	• keine, die über die Nachteile der Rollenlager hinausgehen

@wälzlagerwissen.de

Nadellager

- Kompaktheit
- für oszillierende Belastungen gut geeignet
- relativ geringe Kosten
- höchste
 Tragzahlen bei
 minimal
 benötigtem
 Bauraum im
 Vergleich zu
 anderen
 Wälzlagerarten
- erhöhtes
 Geräuschaufkommen
- Schiefstellungen müssen vermieden werden

Neben den allgemeinen Vor- und Nachteilen von Kugellagern bzw. Rollenlagern zeichnen sich die einzelnen Lagertypen nochmals durch spezifische Eigenschaften aus.

(wälzlagerwissen.de

Diese Tabelle bietet euch einen Überblick zu den wichtigsten Wälzlagerarten, auch in Bezug auf ihre Wälzkörper und Käfigausführungen.

Das könnte Dich auch interessieren

Aufbau und Funktionsweise

9. März 2022

Bestandteile des Wälzlagers Zu den Grundlagen der Wälzlagertechnik zählen der Aufbau und die Funktionsweise von Wälzlagern. Um entspannt einzusteigen, lernt ihr hier alles über die

Weiterlesen »

Gehäuselager

9. März 2022

Charakteristika der Gehäuselager Der Lagereinsatz, der im Prinzip wie ein Rillenkugellager aufgebaut ist, besitzt eine kugelförmige Außenringmantelfläche. Die Aufnahme im Gehäuse hat dagegen die Form

Weiterlesen »

Grundlagen und Einsatzgebiete

4. April 2022

Was ist ein Wälzlager? Ihr wollt mehr über das Wälzlager erfahren? Dann seid ihr hier absolut richtig. Lasst uns aber zuerst mit einer kurzen Erklärung

Weiterlesen »

Punkt- & Linienkontakt

9. März 2022

Was versteht man unter "Punkt- und Linienkontakt"? Möglicherweise habt ihr bereits davon gehört, dass sich Wälzlager in zwei Bauformen differenzieren lassen. Die Einteilung ist von

Weiterlesen »

Rillenkugellager

1. März 2022

Charakteristika der Rillenkugellager In seiner heutigen Form existiert das Rillenkugellager – einigen Optimierungen unterworfen – schon seit etwa 150 Jahren. Rillenkugellager stellen aber nicht nur

Weiterlesen »

Zylinderrollenlager

9. März 2022

Charakteristika der Zylinderrollenlager Erinnert ihr euch noch an die Eigenschaft, die alle Rollenlager gemeinsam haben? Die Rede ist vom Linienkontakt, der folglich auch bei Zylinderrollenlagern

Weiterlesen »